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This paper considers the linear space-inhomogeneous Boltzmann equation for a 
distribution function in a bounded domain with general boundary conditions 
together with an external potential force. The paper gives results on strong 
convergence to equilibrium, when t--. ~ ,  for general initial data; first in the 
cutoff case, and then for infinite-range collision forces. The proofs are based on 
the properties of translation continuity and weak convergence to equilibrium. 
To handle these problems general H-theorems (concerning monotonicity in time 
of convex entropy functionals) are presented. Furthermore, the paper gives 
general results on collision invariants, i.e., on functions satisfying detailed 
balance relations in a binary collision. 
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I N T R O D U C T I O N  

The l inear  Bo l t zmann  equa t ion  is f requent ly  used for ma thema t i ca l  mode l -  
ing in physics.  One  fundamen ta l  ques t ion  concerns  the la rge- t ime behav io r  
of the funct ion represent ing the d i s t r ibu t ion  of  part icles,  in pa r t i cu la r  the 

p rob lem of  convergence t oward  an equi l ib r ium solut ion,  which will be 
s tudied in this paper .  

We  shall  cons ider  the space - inhomogeneous  t r anspor t  equa t ion  for a 
d i s t r ibu t ion  funct ion f ( x ,  v, t) (describing,  for instance,  a neu t ron  dis t r ibu-  
t ion)  depend ing  on a space var iable  x = (x l ,  x2, x3) in a nonmul t ip ly ing ,  
n o n a b s o r b i n g  (i.e., pure ly  scat ter ing)  body  D, and  depend ing  on a veloci ty 
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variable v = (vl, 1)2, I)3) (~ V~--- N 3 and time variable t e R+. Here we assume 
D = /3  to be a closed, bounded domain in R3 with (piecewise) Cl-boundary 
F =  0D. In the case of an external force a = a ( x ,  v )e  R3, the transport 
equation in the strong form is 

Of(x, v, t) + v-gradx f (x ,  v, t) + a.  grad, f (x ,  v, t) = (Qf)(x,  v, t) 
0t 

xeD\F, v e V ,  t e N +  (1) 

supplemented with initial data 

lim f (x ,  v, t) = Fo(x, v), x e D, v e V (2) 
t l 0  

and some boundary conditions, which in a general case can be written 
(ref. 8, p. 107) 

In.vl f (x ,  v, t ) = ~  R(x, v' ~ v ) f (x ,  v', t)ln.v'l dr', 
on - u  

x e F ,  n . v < 0 ,  t>~0 (3) 

Here n = n(x) is the unit outward normal vector at x e F =  0D and R is a 
given nonnegative function. For instance, in the case of specular reflection 
R(x, v' ~ v) = 6(v - v' + 2n(n. v')), where 6 is the usual Dirac measure, and 
in the case of diffuse reflection R(x, v' ~ v) = In. vl M(x, v), where M(x, v) 
is a local Maxwell distribution function. 

For a nonabsorbing boundary the function R in (3) is supposed to 
satisfy es) 

f. R(x, v' ~ v )  d r =  1, x ~ F ,  n . v ' > 0  (4) 
. v < 0  

The collision term in (1) can be written ~8) 

(Qf)(x, v, t) 

= I v  I~ IS(x, v . ) f ( x ,  v', t ) - -$ (x ,  v . ) f ( x ,  v, t)] .B(O, w)dOd(dv. (5) 

where q/>/0 is a known distribution function. Here, v and v .  are the 
velocities before, and v' and v .  are the velocities after a binary collision. 
is the impact plane {(r,~): 0<r~</~,  0~<(<2g)} ,  which also can be 
parametrized by the usual solid-angle representation {(0, ~): 0 ~< 0 < 0, 
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0 ~< ( <  2~}. In the cutoff case, f2 is bounded, that is,/~ < o% or 0 < n/2; but 
in the case of infinite-range forces, f2 is the whole plane, i.e., 0 = re/2. The 
function B is given by B(O, w) = wr]3r/30l, where r = r(O, w) is computed 
through the relevant law of interaction, and w = J r - v . [ .  (For details, see 
refs. 8 and 28; see also refs. 6 and 15). 

In many cases of physical interest the function B(O, w) has a nonin- 
tegrable singularity for 0 = re/2; for instance, with inverse kth power forces, 
where 

B(O, w) = w'b(O) (6) 

with ~ = ( k -  5 ) / ( k -  1), 3 < k <  o% and (8,28) 

b(O) = (9((~/2 - 6') -(k+ 1)/(~- l)), 0 --* ~/2 , 

For that reason most authors have modified the function B, for instance by 
cutoffs of Grad type, thus only allowing forces of essentially finite range in 
the Collision term. (For a discussion of such works, see refs. 21.) 

In connection with transforming problem (1)-(3) into a purely integral 
form we shall, in the case of an external force a = a(x, v), be concerned with 
the solution x = x(t) - x(y, u, t), v = v ( t ) -  v(y, u, t) to the characteristic 
problem of the streaming operator: 

dx 
~ -  = v(t), x(0) = y 

dv (7) 
d t  = a(x, v), v(O) = u 

In the rest of the paper we assume the following hypothesis. 

H y p o t h e s i s  CP. 1. There exists a unique, 
continuous function on R satisfying (7) for a.e. t e N. 

(2) The Jacobian of the transformation 
(y, u) e / )  x V, is equal to unity for every t e N +. 

By this assumption we can (formally) reformulate Eq. (1) (using 
differentiation along the characteristics) 

d 
d-5 (f(x(t) ,  v(t), t)) = (Qf)(x(t),  v(t), t) (8) 

locally absolutely 

(y, u) ~ (x(t), v(t)), 

Remark. The assumption in Hypothesis CP2 is found to be equiv- 
alent to the assumption that a(x, v) is divergence-flee in v; see ref. 24 for 
further references. 
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The purpose of this paper is to give results on strong convergence to 
equilibrium when t ~ 0% first in the cutoff case (Section 4) and then for 
infinite-range forces (Section 5). The proofs are based on a translation con- 
tinuity property, together with results on weak convergence to equilibrium. 
These results are derived in Section 4 for the cutoff case, and then trans- 
formed to the infinite-range case in Section 5. To handle those problems we 
present H-theorems with general convex functionals of our solutions, first 
for the cutoff case in Section 3, and then for the noncutoff case in Section 5. 
We will also in Section 2 present general results on collision invariants for 
functions satisfying detailed balance relations in binary collisions. We 
collect in Section 1 some of our earlier results on the existence of solutions 
to the linear Boltzmann equation with general boundary conditions. 

1. PRELIMINARIES 

In the case of cutoff in the impact parameters, i.e., R < ~ or 0 < =/2, 
the collision term (5) in Eq. (1) can be separated into two terms, "a gain 
term" and "a loss term." A common way to write the collision term is the 
following (see ref. 8, and also refs. 21-24): 

( Q f ) ( x , v , t ) = f  K ( x , v ' ~ v ) f ( x , v ' , t ) d v ' - L ( x , v ) f ( x , v , t )  (1.1) 
V 

where 

L(x, v) = f K(x, v ~ v') dr '  (1.2) 
v 

The collision frequency L is coupled to the functions q/and B in (5) by the 
relation 

L(x,v)=]vj O(x,v,)B(O,w)dOd~dv, (j.3) 

where w - - [ v - v , [ .  We assume (for simplicity) that the collision kernel K 
vanishes on F and outside D. 

Let F + = F + ( v ) = { x ~ F ; n . v > 0 } ,  F _ = F _ ( v ) = { x ~ f ' ; n . v < 0 } ,  
where n = n(x) is the unit, outward normal. Let for given y ~ D \ F ,  u ~ V, 

tb=tb(y,u)=inf{s>O;x(--s)~F=OD, x(O)=y,v(O)=u} (1.4) 

representing the time for a particle going from the boundary to the point 
y following the characteristic curve (see Hypothesis CP). 
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In this section the linear Boltzmann equation (1) with (2)-(4) and 
(1,1) is studied in two integrated forms, the mild form [-Eq. (1.5) below], 
and the exponential form (1.6), which both formally can be derived from 
the equations above. Using, for t e  ~+ ,  a.e. (y, u) = (x(0), v (0) )eD • V, the 
notation 

jF(y, u, t ) =  ~ F ~  t)' v ( -  t)), 0<~ t<~ t b 
~f(x(--tb),V(--tb), t--tb), t>t  b 

where x( - t b )  - :  x(y, u, - tb) e / ' _  ( V ) ,  V =-- v(y, u, - t b )  , the mild form of the 
equation is 

f(x(t),  v(t), t) =f(x(t) ,  v(t), t) + fo (Qf)(x(z), v(z), ~) dr 

and the exponential form is 

f(x(t),  v(t), t )=f(x( t ) ,  v(t), t)exp I -  f~ L(x(s), v(s))ds] 

(1.5) 

+ fo eXp ( - f [  L(x(s), v(s) ) ds) 

x f  K(x(z),v'~v(z))f(x(z),v',~)dv'd~ (1.6) 
V 

finds that f is a mild solution if and only if the 

+ foeXp l--f~ L(x(s--t), v(s--t)) dS] fvK(X(--t), v'-~v(z--t)) 
•  -- t), v', ~) dr '  dr a.e. (y, u) ~ (D\F_) • V, t > 0 

Remark. One 
exponential form holds; see ref. 21, and see also ref. 25. 

To construct solutions to the linear Boltzmann equation with external 
forces together with general boundary conditions, iterate functions 
f ,  = f , (x ,  v, t), n = 0, 1, 2,..., are defined recursively as follows: 

(a) fo(x, v, t) = 0, x s ~  3, v sV,  t e ~ +  

(b) f,+l(Xb, V,t)=f.  Inv'l R(x~, v' t) dv' -,'>o [nv[ - '  v)L(Xb, v', 

Xb~F_(v),  n . v < 0 ,  t ~ +  (1.7) 

(c) f .+ , (y ,  u, t) 

= f,,+ ,(y, u, t) exp [ -  fo L(X(S-- t), v(s-- t)) ds] 
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where 
., (Fo(x ( -  t), v ( -  t)), 0 <~ t ~ tb 

~+l(Y'U't):~fn+l(x(-- tb) ,V(-- tb) , t - - tb) ,  t>t6 

with x(0)=y,  v(0)=u and xb=x(- - tb )sF_(v) ,  v=v(--tb). Let also, for 
simplicity, 

f,(x, v, t) =- 0, x ~ 3 \ D ,  vEV, t s ~ + ,  n ~  

Now we first formulate a monotonicity result for the iterates. (23) 

Lemma.  If Fo, K, and R are nonnegative functions, then the iterates 
fn defined by (1.7) satisfy 

fn+l(X,V,t)>~fn(x,v,t), n e ~ ,  x ~  3, v6V, t~R+ (1.8) 

Then we can formulate an existence theorem about mild solutions to 
the initial-boundary problem. As usual, L~+(D x V) denotes the almost 
everywhere nonnegative functions in L~(D x V). 

Theorem.  Assume that R(x, v' ~v) ,  L(x, v), and K(x, v' ~ v )  are 
nonnegative, measurable functions, such that (4) and (1.2) hold, and 
L(x, v) ~ L~oc(D • V). If Fo ~ LI+ (D x V), then there exists a global mild 
solution f(x, v, t) (i.e., defined for t > 0 )  to the problem (1)-(3) with (1.1). 
This solution satisfies 

fz) fv f (X,V, t )dxdv<~fr~IvFo(x,v)dxdv,  t ~ +  (1.9) 

If L(x, v)f(x,  v, t)~ L~+(D • V), then the trace of the solution f satisfies the 
boundary condition (3) for t s  ~+,  a.e. (x, v ) e F x  V. 

Moreover, mass conservation, giving equality in (1.9), i.e., with 

fD fv f (x '  v, t )dx dv= IDfv F~ v)dx dv, t~ ~+ (1.10) 

holds together with uniqueness (in the relevant Ll-space) under some 
(further) assumptions [for instance, if Lf  ~ L 1+ (D x V) and [nv[ f e L I( F x V), 
or if the detailed balance relations (1.12), (1.17) below hold. (23) 

In the rest of this paper we require a detailed balance relation (or 
reciprocity relation) for binary collisions inside D between particles with d.en- 
sity function f and particles with density function ~b, i.e., we assume that 
there exists a function E =  E(x, v)> 0 such that (see ref. 8, and also ref. 23) 

K(x, v--* v') E(x, v) =K(x, v' ~ v )  E(x, v') (1.11) 
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o r  

q,(x, v , )  E(x, v) = q,(x, v , )  E(x, v') 

Then by (5) the collision term for E vanishes, 

(QE)(x(t), v(t), t) = 0 

(1.12) 

(1.13) 

So, the function E is a "collisionless" solution to Eq. (1) if 

d 
(E(x(t),  v(t))) = o (1.14) 

i.e., if E is constant along the characteristic curves, E(x(t) ,v( t ))  = - 
E(x(0), v(0)) - E(y, u), and if Fo(y, u) = E(y, u), (y, n) E D • V. The typical 
case with detailed balance is given by the local Maxwellian function 

E(x ,v )=po(x )exp( -cm[v l2 ) ,  x ~ D ,  v e V  (1.15) 

where Po >~ 0 is a given function, c is a positive constant, and m is the mass 
of a particle, if the other (given) density function is 

~p(x, v , )  = X(x) e x p ( - c m ,  [v,I 2) (1.16) 

where X>~ 0 is a given function and m .  is the corresponding particle mass. 
Here relation (1.12) follows from the energy conservation law for a binary 
collision. In Section 2 we will prove that there are (essentially) no other 
functions than the Maxwellians (1.15) and (1.16) which satisfy (1.12). 

In the rest of this paper we also assume that the function E(x, v) 
satisfies a detailed balance relation at the boundary, (8'23~ 

Inv'l R(x, v' --,  v,  t) E(x, v') = Inv[ R(x, - v  ~ -v' ,  t) E(x, - v )  

nv' >0 ,  n v < 0  (t.17) 

One finds, by straightforward calculations, that E(x, v) satisfies the bound- 
ary condition (3) if (1.17) holds. Then E(x(t), v(t)) is a solution to the 
linear Boltzmann equation in the strong form (1) with (2) and (3), and also 
to the equation in the mild form (1.5) and in the exponential form (1.6). 
In the special case of an external potential force a = - g r a d x ~ b ( x )  we 
observe that a solution is E(x , v )=po .exp{ -em[ lv ]2+2(~(x ) ] } ,  where 
m[[v[2+ 2~b(x)]/2 represents the total energy of a particle. 

Remark. Many of the results in this paper can be generalized to 
more general cases with suitable functions E(x, v) and a(x, v). For instance, 
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the coefficient c in (1.15) may depend on x, c = c(x), if c, ~b, and a are 
related, such that 

v. gradx E + a �9 gradv E = 0 

Furthermore, we can also (without any essential changes) study, e.g., 
external electromagnetic forces a(x, v) = a(x) + v x b(x), ~1~ because 
[v x b(x)] ,  gradv E = 0; cf. (1.15). 

We end this section with a lemma which is important in the following 
sections and concerns the mild solutionsfq(x, v, t) given by initial functions 
F~ with a cutoff. 

Lemma 1.1. Suppose that the detailed balance relations (1.12) and 
(1.17) hold. Let (for q = 1, 2, 3,...) 

F~(x,v)=min(Fo(x,v),q.E(x,v)), x~D, v ~ V  (1.18) 

Then the mild solution fq(x,  V, t) (given by the theorem above) satisfies 
(for q = 1, 2, 3,...) 

fq(x,v,t)<~q.E(x,v), x~D, v6V, t6R+ (1.19) 

Proof. Define the iterate functions fq(x,v,  t) by (1.7). Then by 
induction we find that 

fq(x(t),  v(t), t) <. qE(x(t), v(t)), n 6 

using that E is a (mild) solution. Let n ~ ;  then f ~ T f  q, and (1.19) 
follows. | 

2. ON THE S U M M A T I O N A L  COLLISION I N V A R I A N T S  FOR 
THE LINEAR B O L T Z M A N N  E Q U A T I O N  

One of the basic ingredients in kinetic theory is the concept of collision 
invariants. In the case of the linear Boltzmann equation, the problem deals 
with finding all functions E =  E(v) and ~, = ~(v,),  such that the following 
relation holds: 

r E(v). ~(v, )  = E(v'). ~(v,)  (2.1) 

for all vectors v, v,,  v', v ,  (representing the velocities in a binary collision) 
satisfying 

my + m , v ,  = my' + m , v ,  (2.2) 

and 
t rnivl 2 + m,lv, I  2 = mlv'( 2 + m ,  [v,I 2 
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The problem (2.1) with (2.2) can equivalently be described as that of 
finding all functions R = log E(v), S = log O(v,), such that 

R(v) + S(v,) = R(v') + S(v,) (2.3) 

holds for all vectors satisfying (2.2). 
Already Boltzmann proved r that in the case of C2-functions the only 

solutions to (2.3) are given by 

a m  
R(v) = - ~ - -  ]vt 2 + b" (my) + Ct 

(2.4) 

S(v,) - am, i v , l Z + b . ( m , v , ) +  C 2 
2 

so E and 0 must be Maxwellian functions, 

E(v)= Eo exp [-  ~- lv]2 + b" (mv) 1 
(2.5) 

I am* ] 0(v,)  = LPo exp - - ~  Iv,I 2 + b" (m,v , )  

Here the constants a, C1, C2, Eo, 00e R and be  N3 may depend on the 
space variable x and the time variable t. 

We want to solve the problem (2.3), or equivalently (2.1), with 
(2.2) in the case when the equation holds only almost everywhere in 
~3x N3x S 2. That is a suitable setting for studying the convergence to 
equilibrium of Ll-solutions to the linear Boltzmann equation; see Section 4. 

The analogous problem of finding all (summational) collision invariants 
for the nonlinear Boltzmann equation has recently been studied in the 
a.e. case by Arkeryd and CercignaniJ 4) That is the problem of finding all 
functions ~b such that the equation 

t r  + r  - O(v ' )  - ~ ( v , )  = 0 

holds a.e. (in ~3 • ~3 • S 2) for vectors satisfying 

(2.6) 

/ V + V , = V ' + V ,  
and 

Ivl = + Iv ,I  ~ = Iv'l ~ + Iv~l  ~ 

They proved that the general measurable solution of (2.6) is 

q~(V) = A  + B ' v  + CIv] 2 

with constants A, C e ~, B e ~3 (see also ref. 31). 

(2.7) 

(2.8)  
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To get this result, they studied an equivalent  p rob lem related to (2.6), 
namely  seeking for all functions 9 such that  

~o(ql + q2) = q~(ql )  + ~o(q2) 

holds a.e. for qx, q2 ~ ~3 with q~ - q2 = 0. Here  

~p(q) = ~b(~ + q) - 06(~) 

and 

(2.9) 

(2.10) 

V ' = ~ + q l  

v , = ~ + q 2  (2.11) 

v , = ~ + q l + q 2  

We will use the results f rom ref. 4 to solve Eq. (2.3) for the linear 
Bol tzmann  equat ion  with two unknown  functions R and S. This will be 
done by some suitable subst i tut ions f rom prob lem (2.3) to (2.6) or (2.9). 

We start  with the following wel l -known relations for the velocities in 
a b inary  collision between particles with masses m and m , ,  (8'22) 

v' = v -  ~cw cos 0 - n =  v - - ~ c ( n w ) ' n  

t v ,  = v ,  + ~c, w cos 0- n - v ,  + tc,(nw) �9 n 
(2.12) 

where ~c = 2m,/(m + m,), ~c, = 2m/(m + m , ) ,  w = v -  v , ,  and 
n = (v - v ') /Iv - v'l = (sin 0 cos ~, sin 0 sin ~, cos 0). 

One  finds that  v ' =  v'(0, ~) and v ,  = v , (0 ,  .~) terminate  on two concen- 
tric spheres with radius ~cw/2 and x,  w/2, respectively (see Fig. 1 in ref. 22). 

In  order  to t ransform our  p rob lem (2.3), we first write 

v ' = v +  ~ q ~ = v + q l + ~ q l  

where ql = - (nw)n, and ~ = t c -  1 = ( m ,  -m) / (m ,  +m). Let q2 be defined, 
such that  

v , = v + q l + q 2  

Then q2 is o r thogona l  to qt because 

q l q 2 = q l ( v , - v - q l ) = q l ( - w ) - q x  2 =  (nw) 2 -  (nw) 2 = 0  

We also see that  

v ,  = v ,  - s : , q l  = v + q2 + ~q~  
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Summarizing, we find that the velocities in a binary collision are 
characterized by 

v ' = v + q l + ~ q ~  
t v , = v + q 2 + a q l  (2.13) 

v , = v + q l + q 2  

with ~ = (m, -m) / (m,  + m) and ql -J- q2 (where q~ and q2 are independent 
of the masses m and m,). 

Furthermore, to transform our problem (2.3) to that in ref. 4, let us 
take a linear transformation ~6 ___). ~6: (V, V,) ~ (V, V,)  given by 

m , - m  ( v -  v,)  
v = v - 2  w = v  2(m, + m) 

(2.14) 
m , - m  ( v -  v,)  

v* = v * - 2 w = v *  2(m, §  

Let also ~ '= ~ + ql and ~, =~ + q2. Then it follows that this transformed 
velocities 

~, = ~ + q2 (2.15) 

v , = v + q l + q 2  

satisfy the following (reduced) moment and energy relations [cf. (2.7)]: 

~ + ~ , = ~ ' + ~ ,  

and 

1~t2§ 1~,12 = 1~'12 § [~12 (2.16) 

One also finds that the velocities ~' and ~, terminate on a common sphere 
with radius w/2. Then define functions/~ and S such that 

k(~') = R(v'), S(~,) = S(v,) (2.17) 

where 

k(~)  = R(v), ~ ( ~ , )  = S ( v , )  

Let us now study the problem of finding all measurable functions R = R(~) 
and S =  S(~,) such that the following relation holds: 

/~(~') + g(~,) -/~(~) - S(~,) = 0 (2.18) 
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a.e. in ~3 X R 3 X S 2, where Eq. (2.15) hold with q~ .(]2 =0. Furthermore, 
define (for suitable { e N3) functions 

?(q) = k ( ~  + q) - -  R(~) 
(2.19) 

~ ( q )  = S ( ~  + q) - S(~) 

Then the problem (2.18) can be written in the following way (for 
suitable {e  N3): Find all functions ? and g such that 

s(ql q- q2) = ?(qt) + ~(q2) (2.20) 

holds for almost all ql, q: e ~3 with 

ql" q2 ---- 0 

Here, with q = qlel + q2e2 + q3e3, where el, e2, e 3 give an orthogonal basis 
for R 3, it follows by (2.20) that 

"?(qlel) + f(q2e2) + s(q3e3) 

g(q) = ?(qze2) + f(q3e3) + g(qlel) (2.21) 

f(q3 e3 ) -]- r(ql el) + s(q2e2) 

Pairwise subtraction in (2.21) gives that 

?(q3e3) - g(ql el ) = f(q2e2) - s e2) = f(q3 e3) - s(q3 %) = 0 

Then it follows (for a.e. q = q l e l  + q2%+ q3e3) that 

~(q) = ?(q) (2.22) 

So we get, by (2.20) and (2.22), the following equation: 

~(ql -t- q2) = ~(q~) + ~(q2), q l . q 2 = 0  (2.23) 

i.e., the same Cauchy equation as in ref. 4. 
Therefore, using the results in ref. 4, we find that the measurable 

solutions are given by 

?(q) = g(q) = B .  q + C Iql 2 

with constants Be  R3 Ce  R. Then, by (2.19) it follows that 

/~(q) =A~ + B "  q + Clq[ 2 
(2.24) 

S(q) = A2 + B.  q + C[ql 2 
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Furthermore, by (2.17) one finds that also the functions R(v) and 
S(v.) are polynomials of second order and then also C2-functions, 
satisfying the results in ref. 5 [cf. (2.4)]. 

Summarizing and using (2.14), (2.17), and (2.24), we have proved the 
following theorem on summation invariants for the linear Boltzmann 
equation (in the almost-everywhere case). 

Theorem 2.1. If (2.3) holds for almost everywhere finite, measur- 
able functions in ~3 x N3 x S 2 with vectors v, v., v', v,  satisfying (2.2), then 
the functions R and S are given by the formulas (2.4). 

Corollary 2.2. The most general solutions of the collision invariant 
problem (2.1) with (2.2) are given by Maxwellian distribution functions 
(2.5), even if Eq. (2.1) holds only for almost everywhere finite, measurable 
functions E and ~. 

3. A GENERAL H-THEOREM FOR CONVEX FUNCTIONS 
(IN THE CUTOFF CASE) 

Suppose that ~0=q~(z), N+--.N is a convex Cl-function, and let 
E = E(x, v) > 0 be a given function. Then a general (relative) H-functional 
H~e(f) for the solution f can be defined by 

H~e(f)(t) = fD fv ~0(/(x, v, t)/E(x, v)-E(x, v)) dx dv (3.1) 

This functional is a generalization of the usual (negative) relative entropy 
functional with 

p(z) = z log z and z = f iE (3.2) 

(see ref. 23 and also refs. 29, 17, and 20). 
In proving a general H-theorem for the functional (3.1), we will 

assume that there exist detailed balance relations for the collisions, both 
inside D [see (1.11), (1.12)] and at the boundary F=~D [see (1.17)-1. 
These assumptions are satisfied for almost all physically interesting cases; 
see also the results in Section 2. 

The following generalized H-theorem for solutions to the linear 
Boltzmann equation with general boundary conditions states that (under 
the assumptions on detailed balances) the H-functional (3.1) is nonin- 
creasing in time with the changes in time bounded (from above) by a 
nonpositive term coming from the collision term. 

Theorem 3.1. Let f = f ( x ,  v, t) be the mild solution of problem 
(1)-(4) with (1.1) and (1.2) given in Theorem 1, and let the detailed 
balance relations (1.11) and (1.17) hold together with (1.14), and 
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EeLI(D x V). If H~(Fo) exists for a given convex Cl-function 49, N+ ~ R, 
then the relative /-/-functional H~e(f)(t) in (3.1) exists for t>O  and is 
nonincreasing in time. Moreover, 

where 

H~e(f)(t) <~ H~(Fo) + N~(f)(z) dz (3.3) 

N~(f)(t)= ~ ID fv lvK(X, V-~ v') E(x, v) 

ProoL 
q~(z) = z log z, z =f/E, so we will here only outline the main steps. 

Start with a double cutoff in the initial function 

• I-;(X,y, ,_)S(x, v,,)] 
L E(x, v') ETx~ v-)J 

• '(f(x'v-" t!~]dxdvdv'<~O (3.4) 
C-~,vT ) - ~  \ E(x, v,) : j  

The proof follows our earlier proof in ref. 23 for the case with 

1 
Fok'i(x, v) = ] E(x, v) + min(Fo(x, v), kE(x, v)), k, j = 1, 2, 3,... (3.5) 

and construct iterate functions f~'S(x, v, t), n = 0, 1, 2,..., by (1.7). Then (by 
differentiation along the characteristics) one finds for t~ [0, T], a.e. 
(x, v) ~ ~3 x ~3, that 

d (f~.S(x(t) ' v(t), t ) )+  L(x(t), v(t))f~'J(x(t), v(t), t) 
dt 

= f K(x(t), v' ~ v(t))f~'-J 1 (x(t), v', t) dr '  (3.6) 
V 

Multiplying by q)'[f~'S(x(t), v(t), t)/E(x(t), v(t))] and using (1.2) and (1.4), 
we get 

v.,) 1 dt \ E(x(t),v-~-) j.E(x(t), 

= f [K(x(t), v' ~ v( t ) ) f~ ' / l (x( t ) ,  v', t) 
V 

-K(x( t ) ,  v ( t ) ~  v ' ) f~J(x( t ) ,  v(t), t)] 

x ~p' (f~J(x(t), v(t), t)'] 
\ E(x(t), v-~) J dv' (3.7) 
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Then integrating ~ . . . d y d u &  (along the characteristics), using the 
Green identity and a change of variables (y,u)~--~(x(t),v(t)) (see 
Hypothesis CP2), we get 

(f~J(x, v, z)\  

(F~'J(x, v)'] 

t k , j  t ;o ;o; ; .,rj  ,(x,v, m = K(x, v ~ v') E(x, v) - - . 5 2 - ,  
v v [ E(x,v ) E(x, v) J 

• ~, (s~,~(x, v, ~!) 
\ E(x,v) j d x d v d v ' &  

-f]f~f~ [ f : ' J (x ' v ' z )~E(x ,v ) ' (nv)dadvdz  (3.8) 
~ t E--~, v) ) 

where nv > 0 on F + ,  nv < 0 on F _ ,  and da is the surface measure. 
By induction (n = 1, 2, 3,...) one finds that the following inequalities 

hold for k, j e N ,  ( x , v ) e D x  V, t ~ N +  (see Lemma 1.1): 

1 
- E(x, v) ~ f~ ' ; (x ,  v, t) ~< (k + 1) E(x, v) (3.9) 
J 

Then, letting n ~ oe and using the dominated convergence theorem, we 
find that (3.8) holds also for f k J = l i m n ~  k,j o~ f n  , due to the fact that ~0'(z) 
is bounded for 0 < 1/j <<, z = f /E  <<, k + 1 < oe. 

Now the first term (I1) on the right-hand side in (3.8) (with n--* oo), 
i.e., the collision term, can be written after a change of variables v ~ v', 
v' ~--~ v and using (1.11), (3.4) in the following way: 

1 ,  V~,~(x, v, ~/ sk, J(x, v,, ~t] z'('):~fof~fvfvK(x'v-~v')E(x'v)c -i~,;i E(x,v') j 

•  ,(Sk~(x,v,,~] 
\ E(x, 7 ) - ) - - c p  \ E(x,v) / j d x d v d v ' d z  

=- N~e (fk'J)(z) dz <~ 0 (3.10) 

where ( a -  b)[~o'(b) - ~0'(a)] ~< 0 if q~ is convex. 
Furthermore, the second term on the right-hand side of (3.8) (with 

n ~ oe), i.e., the boundary term, can be found to be nonpositive by using, 
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e.g., the Jensen inequality for the convex function ~o (see ref. 8, p. 115, and 
also ref. 23). Then (3.3) with (3.4) holds for f = f  k'j, i.e., 

(3.11) 

Now letting k, j -+  oo, and using Fatou's lemma for the nonnegative 
function, 

i(,')] [ (s(v) 3 (s(v')3] 
P(f)=2 LE(v) E(v')J' ~0' -~0' \E(v)) t,E(v'))J 

we get 

SO 

fo fo fvfv P(f) dxdv dr'dr ~< lim inf~,j+oo .of' fvfv plf 'j)d'dv dr'dr 

lim sup N~(fk>J)(z) dr <~ N~(f)(r) dr 
k , j ~  oo 

where f = f ( x ,  v, t ) =  limk, j_+ oo fk'J(x, v, t) exists [-see Section 1 ]. 
Furthermore using the lower semicontinuity property for functionals 

of convex functions, 123'24'14) one finds that 

fo fv ~~ E dx dv<~ lim inf Jo fv <p(fk'j/E) E dx dv 

By monotone and dominated convergence we also get 

lim fD Iv 4~176 dx dv <~ fD Iv 4~176 E dx dv 
k, j ---> co 

Summarizing, we find that (3.3) with (3.4) holds for f =  limk.j~ oo fk.:, and 
the general H-theorem is proved. ] 

Romark. Results on H-functionals with general convex functions 
have been obtained in other cases (see, e.g., refs. 20 and 17). 

4. ON WEAK AND STRONG CONVERGENCE TO EQUILIBRIUM 
IN THE CUTOFF CASE 

The question of (weak and strong) convergence (when t--+ oo) to a 
stationary equilibrium solution has been studied (among others) by 
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Arkeryd,~l'3) Elmroth, (14) Gustafsson, (16) Wennberg,(30) Desvillettes, (11) and 
di Perna-Lions (25) for the nonlinear Boltzmann equation. We will study 
the problem for the linear Boltzmann equation (1)-(5) with external 
potential force 

a ( x ) =  - gradx ~b(x), ~CI(D) (4.1) 

general collision function B(O, w), including both soft and hard inverse 
collision forces, together with [see (2.5)] 

O(x, v , )=  X(x) G(v,), X(x) ~ L~(D) 

G(v,) --= exp( -cm,  Iv,I 2) 
(4.2) 

(with constant c > 0 and mass m,) .  Then [see (1.14)] we find that the local 
Maxwellian 

E(x, v) = Eo exp[ - cmlvl 2 _ 2crumb(x) ] (4.3) 

is a stationary solution to (1) if (1.17) holds. 
The main result of this section is Theorem4.6, giving strong 

Ll-convergence to a Maxwellian equilibrium solution when t ~  ~ .  The 
proof is based on a result about weak convergence to equilibrium, Proposi- 
tion 4.4, together with a lemma about translation continuity, Lemma 4.5. 
(For discussions on earlier results on asymptotics for the linear equation, 
see, e.g., ref. 27, Section XI.12, and ref. 12; see also refs. 6, 15, 18, and 19 for 
further references.) 

First we will here prove a uniqueness result for (mild) equilibrium 
solutions in the cutoff case. We use the H-functional (3.1) with cp(z)=z 2, 
z=f/E, and the following notations [-see (4.2) and (4.3)]: 

~t-}] ~ EIx, v) d,, a~ {4.4) I-l~'(f)(t): ;o f~L E(x, v) _1 

P (f)tt)=fofvf 
f (x ,  _,'_,_t) f (x ,  ,, t) 2 

• E(x, v') E(x, v) dx dv dv' 

= fD fv fv fa B(O, w) ~p(x, v,) E(x, v) 

f (x ,  v', t) f ( x , v , t )  2 
• E(x, v') E(x, v) dx dv d r ,  dO d~ (4.5) 

822/72/1-2-25 
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P r o p o s i t i o n  4.1. Let f (x ,  v) be a (mild) equilibrium solution to 
the linear Boltzmann equation (with BOE>O almost everywhere), such 
that the H-theorem (3.3) holds for ~o(z)= z 2, together with 

fDfvf(X,v) dxdv=fofvE(X,v)dxdv (4.6) 

Then f = E a.e. in D x V. 

ProoL Use the H-theorem (3.3) and (3.4) with q~(z)=z 2, z=f/E, 
and F 0 = )  7 [see (4.4) and (4.5)]: 

HT(7) + <. 

Here PE(f)~> 0, so PE(f)= O, which implies that (a.e. in D x V x V x f2) 

f ( x , v ' ) O ( x ,  ' - v,) = f ( x ,  v) ~p(x, v ,)  

Then, by (4.2) and Theorem 2.1 (on collision invariants) it follows that 

~7(x, v )=  Y(x) e x P ( -  cmtvl 2) 

with some function Y(x). Using that Q(~q(x(t),v(t))-O, one finds that 
f(x(t) ,  v(t)) is constant along a characteristic curve. Then, by (4.1) and 
(4.2), we find that Y(x)= I1o expl--2crmb(x)], where the constant Yo = Eo 
because of the mass relation (4.6). The result follows. II 

Remark 4.2. To handle the problems of weak and strong con- 
vergence to equilibrium (when t-+ ~ )  for general collision functions 
B(O, w), including both soft and hard inverse collision potentials, we can 
first make a cutoff in the initial data, F q = min(Fo, qE), q = 1, 2, 3 .... [see 
(1.18)]. Then (see Lemma 1.1) the mild solution fq = fq(x, v, t) with initial 
function F~ is bounded by qE(x, v), so all higher moments of fq are 
globally bounded in time 

fDfv(l+v2y/2fq(x,v,t) dxdv~qfDfv  (1 +/)2) ~ E(x, v) dx dv, a > O  

(4.7) 

Furthermore, using mass conservation and the order relation fq  ~ fq  + 1, we 
observe that a solution f (x ,  v, t) will converge (weakly or strongly) in L 1 
to the (right) Maxwellian function E(x, v), when t ~ o% if (e.g.) the solu- 
tion fq(x, v, t) converges to some Maxwellian Eq(x, v) = Cq. E(x, v) with a 
constant Cq >0.  [Cq = [[F~II/IIFo[], using the usual LI(D x V)-norm.] This 
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statement can be seen in the following way: For given e > 0 ,  choose 
qo = qo(e) such that UFo- Fq[[ < e/3 for q > qo. Then, by mass conservation, 
HE-EqN = t [ f - f q N  <e/3 for all t > 0 .  So, if (for instance) [tfq-Eql[ <e/3 
for all t > T(e), then [ i f -  Eli < e for t > T(e). Consequently, we also notice 
that (to study convergence to equilibrium) we do not need any entropy 
assumption [of  type F o l o g ( F o / E ) s L l ( D x  V)], i.e., we can study the 
problem with general initial data. 

In proving our results in this and next section, we will use a lernma 
concerning lower semicontinuity of a functional of a convex function (of 
two variables), appearing in the study of convergence of the collision term 
in the H-theorem [see (3.4), (3.5)] (see also ref. 26 for an analogous case). 

- -  q m  q I . emma 4.3. Let f , -  f , -  f ,(x, v, t ) ~ q E ( x ,  v), n, q =  1, 2, 3,..., and 
B N = B N ( O  , W) -- rain(B(0, w), N), N = 1, 2, 3 ..... If the function f ,  converges 
weakly in L 1 t o f = f ( x ,  v, t), when n--* o% then [see (4.5)] (for fixed q, N) 

f f f f f '  ~ I f t x ,  v,  r) f (x ,  v',_~) 2 
dx dv dv . dQ dz 

f , ( x , v , z )  f , ( x , v ' , z )  2 
x 0 E  ~-x lv7  E-~;v ' ]  dx dv dv ,  d~2 dz (4.8) 

Proof. Use, for the convex function z(~, ~/)= ( 4 -  q)2, the following 
elementary inequality: 

( ~ - q ) 2 > ~ ( a - b ) Z + 2 ( a - b ) ( ~ - a ) + 2 ( b - a ) ( t l - b )  (4.9) 

with 

= f,(v)lE(v),  t /= f,(v')/E(v'),  a = f(v)lE(v),  b = f(v ' ) /E(v ')  

Multiplication of (4.9) by B N ~ t E = - - B N ( O ,  w)~(x ,  v , )E(x ,  v) and integra- 
tion gives the result; for instance, we have 

,im fffff il"l  ,~- ~ \E(v)  E(v '))  [ f . ( v ) - f ( v ) ]  dx dv d r .  ag2 d-c = 0  

by using the weak convergence assumption together with the bounded 
functions BN~ and f /E .  | 
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Now we 
equilibrium for our mild solution f, i.e., giving 

fo f g(x, v)Es(x, v, E(x, v)] dx dv- o 

when t ~ 0% for all test functions g ~ L~176 x V). 

can formulate a result about weak Ll-convergence to 

(4.10) 

Proposition 4.4. Let f(x,  v, t) be the mild solution to the linear 
Boltzmann equation (1.5) with external potential force a [see (4.1) ], kernel 
function r [see (4.2)], and general collision function B together with 
boundary conditions (3) and detailed balance (1.17). Then, for every 
Fo(X,v)~LI(D•  V), the solution f(x,v,  t) converges in weak LLsense 
(4.10), when t ~  ~ ,  toward a unique Maxwellian function E(x, v) [see 
(4.3)] with 

Proof. First approximate the initial function Fo with F q [see (1.18)]; 
see Remark4.2. Then, using the H-theorem, Theorem 3.1 with ~o(z)=z 2, 
z = f / E ,  a n d f = f q < ~ q E  (Lemma 1.1), we get 

iO /q'(2)[ b-'q ] (4.11) H~)(fq)(t) + PE(fq)(z) dr <~ --E ,~of 

where PE(fq)>>.O [see (4.4) and (4.5)]. So the integral ~ Pe(fq)(Q dr 
converges, and there is an increasing sequence { t, )~  such that 

lira Pe(fq)( t , )=O (4.12) 
n~oo 

Let 

f~(x, v)=fq(x,  v, t,) (4.13) 

Then, by a well-known compactness lemma using [see (4.7)] 
S~ (1 + vF f ,  dx dv < C~ and ~S f ,  log(L/E) dx dv < CE (see Arkeryd (1) and 
also refs. 23 and 24) there is a subsequence {fn,}/~=1 such that fn, converges 
weakly to a function f(x, v) ~ LI+ (D x V) when i ~ ~ .  

Now, using Lemma 4.3 concerning lower semicontinuity of convex 
functionals, it follows that PE07) = 0. Then, by Theorem 2.1 and (1.10), we 
get 

?(X, V) ~ gq(x, v) : Cq. g(x) v) 
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with a constant Cq = IlF~ll/llFot[ > 0, and the Maxwellian function E [see 
(4.3)]. 

Finally we prove that the solution fq(x, V, t) converges weakly in 
LLsense toward Eq(x,v) when t ~  oo. Here we use a contradiction 
argument. ~ Together with Remark 4.2, this completes the proof. | 

In order to take the step from weak to strong LLconvergence (when 
t ~ oo), we will now prove a result, Lemma 4.5, concerning translation con- 
tinuity of our (mild) solution. Then Theorem 4.6, on strong convergence to 
equilibrium, will follow in the same way as earlier results by Carleman (v) 
and Gustafsson (16) for the nonlinear space-homogeneous Boltzmann 
equation. 

kemma 4.5. Let f (x ,  v, t) and fh, u(x, v, t) be the mild solutions of 
the linear Boltzmann equation (1)-(5) with initial data Fo(x,v) and 
Fo(x + h, v + u), respectively. Then 

lim fnf If ,u(x,v,t)-f(x, vot)ldxdv=O 
( h + u ) ~ O  V 

(4.14) 

uniformly in time, t ~ ~ +. 

Proof. Let 5 > 0 be given. We will approximate the functions in two 
steps. First approximate the initial function F0 by a continuous function 
F q with compact support and bounded by qE(x, v), such that [with the 0,  c 

usual LI(D x V)-norm] 

llFg, c-Folt <e/3, q>qo, some qo=qo(e) (4.15) 

This can be done in the following way: Let first P~=min(F0,  qE) for 
Iv] ~<q and F q = 0  for [v[ >q,  q =  1, 2, 3,.... Now F~ ,7 F0, when q-~ oo, 
and (e.g.) [fFq-F0[[ < ~/9 for q > qo, some qo = qo(5). Then use convolution 
to get a new continuous (approximative) function P~.c, such that 
P~ c - P ~  < 5/9. So, with Fqo, c = min(P~,c, qE), and q large enough, the 

statement (4.15) follows. 
Next, extend the function F~, c to a continuous function, defined also 

in a neighborhood of D x Vq, where Vq--{v: Iv] ~<q}, such that F q 0, c 

vanishes outside this extended domain (Dx Vq). Then, using that this 
continuous function with compact support is uniformly continuous in 
D x Vq, we can find (for given ~ > 0) a 6 = 3(5) > 0 such that for all h, u 
with h2+u2<62 and x, v~/3x V q~ 

[Fq, c(X + h, v + u ) -  Fg, c(x, v)j < (e/3) Cq (4.16) 
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with a constant Cq = min(E(x, v)/llEII)> 0. Now we get by (4.16) that (for 
X, v E D x  V q )  

IFg, c(x + h, v + u)  - F~,c(x, v)] < (E/3) E(x, v)/llgll (4.17) 

Then, using the linearity of the Boltzmann equation together with mass 
conservation, we find from (4.17) that (for x, v E/5 • ~'q, and all t > 0) there 
holds 

Iff~,.(x, v, t ) - f C ( x ,  v, t)l < (e/3) E(x, v)/I]Ell (4.18) 

where f~, .  and f~ are the corresponding mild solutions (with initial data 
q c Fqc and Fo,~). By (4.18) it follows that [[fh, u-fCl] <e/3 holds, uniformly 

in time t > 0 .  Summarizing and using (4.15), we find that [Ifh, u - f l l  < e  
holds for all t > 0, and all h, u with h2+ u2< 3 2, where fh,u and f are the 
solutions with initial functions Fo(x + h, v + u) and Fo(x, v), respectively. So 
the translation continuity property (4.14) follows. I 

Remark. We observe that the limit (4.14) is also uniform in the 
cutoffs. This is so, because the estimate ]]fh, u - f l l  < e holds independently 
of the cutoff radius; see also Section 5. 

Finally we come to the main result in this section concerning strong 
convergence to equilibrium in the cutoff case. 

T h e o r e m  4.6. Let f = f ( x ,  v, t) be the mild solution to the linear 
Boltzmann equation in the case of external potential force (4.1), general 
collision function B (including both soft and hard inverse potentials), and 
(Maxwellian) kernel function ~ = ~(vx) [see (4.2)], together with general 
boundary conditions (3) and detailed balance relation (1.17). Then, for 
every Fo(x, v)~ LI(D x V), the solution f (x ,  v, t) converges strongly in L 1, 
when t ~ o o ,  toward a unique Maxwellian function E(x,v), see (4.3) 
(where I[Ell = [IF0l[ ), i.e., 

lim fDf If(x,v,t)-E(x,v)ldxdv=O 
t ~ c~ V 

Proof. Use the weak convergence result, Proposition 4.4, together 
with the translation continuity property, Lemma 4.5. Then the theorem 
follows; see refs. 7 and 16 and also ref. 13. I 

5. THE CASE OF I N F I N I T E - R A N G E  FORCES W I T H O U T  
C U T O F F  

In this section the linear Boltzmann equation is considered without 
cutoff in the collision term, i.e., including infinite-range forces. It is studied 
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in the following weak form, which can formally be derived from Eq. (1) 
with (2) and (5): (23) 

fDfv g(x, v, t) f(x, v, t) dx dv 

= fDfvg(X, v, O)Fo(x, v )dxdv  

+ v v 'g radxg (x ' v ' z )+a (x ' v )g radv g (x ' v ' z )+ -~ zg (x ' v ' z )  

xf(x,  v, z) dx dv dr 

fofofffo + [g(x, v', ~ ) - g ( x ,  v, ~)] 
V V 

• B(O, w) $(x, v,) f(x,  v, "c) dx dv d r ,  dO d~ dr (5.1) 

for all test functions gEC~ '~ (for simplicity). Here Co~'~= ( g ~ C  ~'~" 
g(x, v, t )=0,  x ~ F =  c3D}, where 

={g~C1(D•  V• [-0, or)): ]]gHl=sup ]g(x, v, t)l C1o~ 

+ sup g(x, v, + sup Igradx g(x, v, t)l 

+ sup Igrad, g(x, v, t)l < ~ 
) 

(5.2) 

The mathematical problems in the noncutoff case come from the non- 
integrability of the function B(O, w) when 0 ~ re/2 (see the Introduction). 
Here we study (for simplicity) inverse kth power potentials with collision 
function (see the Introduction) 

B(O,w)=w~b(O), w=lv -v , I ,  7=(k-5)/(k-1), 3 < k < ~  (5.3) 

f~/2 b(O) cos 0 dO < ~.  where ~/2 b(O) dO = ~ ,  jo 
Then we have the following result on the existence of L~-solutions: ~23) 

T h e o r e m  E. Let the assumptions on ff(x,v,) [-see (4.2)] and 
B(0, w) [see (5.3)] together with (1.17) be satisfied. Suppose 
Folog(Fo/E)~LI(D• Then there exists (for t > 0 )  a solution 
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f (x ,  v, t )e  L~+ (D x V) to the linear Boltzmann equation in the integral form 
(5.1). The solution conserves mass, 

fDIvf(X, V,t) dxdv=fz~fvFo(x, v)dxdv (5.4) 

Higher moments are globally bounded in time for hard potentials (k/> 5) 
and locally bounded for soft potentials (3 < k < 5). 

Remark. The results in Theorem E can (in some cases) be extended 
to very soft potentials; see ref. 9 for 2 < k ~< 3, and ref. 10 for 9/5 < k ~< 2. 

For our main result in this section, Theorem 5.3, on (weak and) strong 
convergence to equilibrium for our solutions, an H-theorem in the infinite- 
range case will be used [-see (3.1)]. 

P r o p o s i t i o n  5.1. Let f ( x , v , t )  be the Ll-solution to Eq.(5.1), 
given by Theorem E and constructed as a limit of mild (cutoff) solutions. 

A. If q~: ~+ ~ ~ is a convex cl-function, and H~(Fo) exists [-see 
(3.1)], then 

H~(f)(t) <~ H~:(F0), t > 0 (5.5) 

B. In particular, if cp(z)=z 2, z=f/E,  withf=fq(x,  v, t) the solution 
belonging to Fg [see (1.18)], then [see (4.4) and (4.5)] 

H~)(fq)(t) + fo PE(fq)(z) dr <<. H~)(F~) (5.6) 

ProoL Suppose f ,(x,  v, t) is the mild solution with cutoff radius r n = It, 
n = 1, 2, 3,... Then, by a compactness lemma, (~'23) there is a subsequence 
{fnj} converging weakly to a solutionf(x,  v, t) of the infinite-range equation 
(5.1). From here statement A follows by the lower semicontinuity property 
for convex functionals (of one variable), together with the H-theorem in the 
cutoff case, Theorem 3.1. 

For statement B use for the collision term Lemma 4.3 concerning a 
lower semicontinuity property for convex functionals (of two variables). 
Then [-using bounded collision functions BN=min(B, N), and letting 
N ~  ~ ;  see also ref. 26], we get 

f f f f f  f (v ' )  f (v)  2 
BOE JJJJJ E(v ) E(v) 

l i m i n f f ~ B u r  e l l l v l  f,,j(v') f,,j(v) 2 ~< lim 
N ~ o o  j . . . . . . .  E(v') E(v) 

The proposition follows. | 
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Remark 5.2. By the proof of Proposition 5.1 the functionsfns(x, v, t) 
converge weakly in L 1 to f (x ,  v, t), when j -~  ~ .  Now, using that the trans- 
lation continuity holds independently of the cutoffs (Lemma 4.5), we find 
that the convergence (in fact) is strong in Ll-sense, 

fDfv  I f n j ( x , v , t ) - f ( x , v , t ) l d x d v ~ O ,  j ~ o o  

We can now formulate the main result of this section, concerning 
strong convergence to equilibrium of our solutions in the infinite-range 
case, for both soft and hard collision potentials, 3 < k < oo. 

T h e o r e m  5.3. Let f (x ,  v, t) be the solution (given by Theorem E) 
to the weak form of the linear Boltzmann equation (5.1) in the infinite- 
range case, with ~b=~(v . )  and B given by (4.2), (5.3), together with 
external force a [see (4.1)] and general boundary function [-see (3), (4), 
and (1.17)]. Then for every Fo(x ,v)6Ll+(Dx V) the solution f (x ,v ,  t) 
converges in strong Ll-sense (when t ~ o o )  to a unique Maxwellian 
function E(x, v) [see (4.3)] with 

fo ;vE(X, v) dx dv= fD fvFo(x, v) dx dv 

Proof. First approximate F0 in L 1 with F~ = min(Fo, qE), q = 1, 2, 3,... 
(see Remark 4.2). Next use the H-theorem (Proposition 5.1B) with q~(z) = z ~ 
to prove uniqueness of the stationary solution Eq(x, v) (Proposition 4.1). 
Then, continuing as in the cutoff case, the weak convergence result follows, 
using (among others) the H-theorem, Proposition 5.lB. Finally, we get 
strong Ll-convergence to the Maxwellian equilibrium solution when t ~ oo 
(see the proof of Theorem 4.6). For  this we use the weak convergence 
result, together with the translation continuity property, Lemma 4.5, where 
the estimates I t f~ ,~ . - f% < e hold independently of the cutoff radius n s (see 
Remark 5.2 and the Remark after Lemma 4.5). I 
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